Marsbahis

Bedava bonus veren siteler

Marsbahis

Hacklink

Marsbahis marsbet

Hacklink

Hacklink

ikimisli

Marsbahis

Marsbahis

Marsbahis

Hacklink

casino kurulum

Hacklink

Hacklink

printable calendar

Hacklink

Hacklink

jojobet giriş

Hacklink

Eros Maç Tv

hacklink panel

hacklink

Hacklink

Hacklink

fatih escort

Hacklink

Hacklink

Hacklink

Marsbahis

Rank Math Pro Nulled

WP Rocket Nulled

Yoast Seo Premium Nulled

kiralık hacker

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink Panel

Hacklink

Holiganbet

Marsbahis

Marsbahis

Marsbahis güncel adres

Marsbahis giris

Hacklink

Hacklink

Nulled WordPress Plugins and Themes

sekabet giriş

olaycasino giriş

Hacklink

hacklink

imajbet giriş

Taksimbet

Marsbahis

Hacklink

Marsbahis

Marsbahis

Hacklink

Marsbahis

Hacklink

Bahsine

Betokeys

Tipobet

Hacklink

Betmarlo

matbet giriş

Marsbahis

บาคาร่า

holiganbet

Hacklink

Hacklink

Hacklink

Hacklink

duplicator pro nulled

elementor pro nulled

litespeed cache nulled

rank math pro nulled

wp all import pro nulled

wp rocket nulled

wpml multilingual nulled

yoast seo premium nulled

Nulled WordPress Themes Plugins

Marsbahis casino

Buy Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Bahiscasino

Hacklink

Hacklink

Hacklink

Hacklink

หวยออนไลน์

Hacklink

Marsbahis

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink satın al

Hacklink

Marsbahis giriş

Marsbahis

Marsbahis

casibom

meritking

maltcasino

sekabet

Nettoyage Professionnel Savoie

imajbet giriş

Marsbahis


Most RAG failures originate at retrieval, not generation. Text-first pipelines lose layout semantics, table structure, and figure grounding during PDF→text conversion, degrading recall and precision before an LLM ever runs. Vision-RAG—retrieving rendered pages with vision-language embeddings—directly targets this bottleneck and shows material end-to-end gains on visually rich corpora.

Pipelines (and where they fail)

Text-RAG. PDF → (parser/OCR) → text chunks → text embeddings → ANN index → retrieve → LLM. Typical failure modes: OCR noise, multi-column flow breakage, table cell structure loss, and missing figure/chart semantics—documented by table- and doc-VQA benchmarks created to measure exactly these gaps.

Vision-RAG. PDF → page raster(s) → VLM embeddings (often multi-vector with late-interaction scoring) → ANN index → retrieve → VLM/LLM consumes high-fidelity crops or full pages. This preserves layout and figure-text grounding; recent systems (ColPali, VisRAG, VDocRAG) validate the approach.

What current evidence supports

  • Document-image retrieval works and is simpler. ColPali embeds page images and uses late-interaction matching; on the ViDoRe benchmark it outperforms modern text pipelines while remaining end-to-end trainable.
  • End-to-end lift is measurable. VisRAG reports 25–39% end-to-end improvement over text-RAG on multimodal documents when both retrieval and generation use a VLM.
  • Unified image format for real-world docs. VDocRAG shows that keeping documents in a unified image format (tables, charts, PPT/PDF) avoids parser loss and improves generalization; it also introduces OpenDocVQA for evaluation.
  • Resolution drives reasoning quality. High-resolution support in VLMs (e.g., Qwen2-VL/Qwen2.5-VL) is explicitly tied to SoTA results on DocVQA/MathVista/MTVQA; fidelity matters for ticks, superscripts, stamps, and small fonts.

Costs: vision context is (often) order-of-magnitude heavier—because of tokens

Vision inputs inflate token counts via tiling, not necessarily per-token price. For GPT-4o-class models, total tokens ≈ base + (tile_tokens × tiles), so 1–2 MP pages can be ~10× cost of a small text chunk. Anthropic recommends ~1.15 MP caps (~1.6k tokens) for responsiveness. By contrast, Google Gemini 2.5 Flash-Lite prices text/image/video at the same per-token rate, but large images still consume many more tokens. Engineering implication: adopt selective fidelity (crop > downsample > full page).

Design rules for production Vision-RAG

  1. Align modalities across embeddings. Use encoders trained for text↔image alignment (CLIP-family or VLM retrievers) and, in practice, dual-index: cheap text recall for coverage + vision rerank for precision. ColPali’s late-interaction (MaxSim-style) is a strong default for page images.
  2. Feed high-fidelity inputs selectively. Coarse-to-fine: run BM25/DPR, take top-k pages to a vision reranker, then send only ROI crops (tables, charts, stamps) to the generator. This preserves crucial pixels without exploding tokens under tile-based accounting.
  3. Engineer for real documents.
    Tables: if you must parse, use table-structure models (e.g., PubTables-1M/TATR); otherwise prefer image-native retrieval.
    Charts/diagrams: expect tick- and legend-level cues; resolution must retain these. Evaluate on chart-focused VQA sets.
    Whiteboards/rotations/multilingual: page rendering avoids many OCR failure modes; multilingual scripts and rotated scans survive the pipeline.
    Provenance: store page hashes and crop coordinates alongside embeddings to reproduce exact visual evidence used in answers.

StandardText-RAGVision-RAGIngest pipelinePDF → parser/OCR → text chunks → text embeddings → ANNPDF → page render(s) → VLM page/crop embeddings (often multi-vector, late interaction) → ANN. ColPali is a canonical implementation.Primary failure modesParser drift, OCR noise, multi-column flow breakage, table structure loss, missing figure/chart semantics. Benchmarks exist because these errors are common.Preserves layout/figures; failures shift to resolution/tiling choices and cross-modal alignment. VDocRAG formalizes “unified image” processing to avoid parsing loss.Retriever representationSingle-vector text embeddings; rerank via lexical or cross-encodersPage-image embeddings with late interaction (MaxSim-style) capture local regions; improves page-level retrieval on ViDoRe.End-to-end gains (vs Text-RAG)Baseline+25–39% E2E on multimodal docs when both retrieval and generation are VLM-based (VisRAG).Where it excelsClean, text-dominant corpora; low latency/costVisually rich/structured docs: tables, charts, stamps, rotated scans, multilingual typography; unified page context helps QA. Resolution sensitivityNot applicable beyond OCR settingsReasoning quality tracks input fidelity (ticks, small fonts). High-res document VLMs (e.g., Qwen2-VL family) emphasize this.Cost model (inputs)Tokens ≈ characters; cheap retrieval contextsImage tokens grow with tiling: e.g., OpenAI base+tiles formula; Anthropic guidance ~1.15 MP ≈ ~1.6k tokens. Even when per-token price is equal (Gemini 2.5 Flash-Lite), high-res pages consume far more tokens. Cross-modal alignment needNot requiredCritical: text↔image encoders must share geometry for mixed queries; ColPali/ViDoRe demonstrate effective page-image retrieval aligned to language tasks.Benchmarks to trackDocVQA (doc QA), PubTables-1M (table structure) for parsing-loss diagnostics. ViDoRe (page retrieval), VisRAG (pipeline), VDocRAG (unified-image RAG).Evaluation approachIR metrics plus text QA; may miss figure-text grounding issuesJoint retrieval+gen on visually rich suites (e.g., OpenDocVQA under VDocRAG) to capture crop relevance and layout grounding.Operational patternOne-stage retrieval; cheap to scaleCoarse-to-fine: text recall → vision rerank → ROI crops to generator; keeps token costs bounded while preserving fidelity. (Tiling math/pricing inform budgets.) When to preferContracts/templates, code/wikis, normalized tabular data (CSV/Parquet)Real-world enterprise docs with heavy layout/graphics; compliance workflows needing pixel-exact provenance (page hash + crop coords).Representative systemsDPR/BM25 + cross-encoder rerankColPali (ICLR’25) vision retriever; VisRAG pipeline; VDocRAG unified image framework.

When Text-RAG is still the right default?

  • Clean, text-dominant corpora (contracts with fixed templates, wikis, code)
  • Strict latency/cost constraints for short answers
  • Data already normalized (CSV/Parquet)—skip pixels and query the table store

Evaluation: measure retrieval + generation jointly

Add multimodal RAG benchmarks to your harness—e.g., M²RAG (multi-modal QA, captioning, fact-verification, reranking), REAL-MM-RAG (real-world multi-modal retrieval), and RAG-Check (relevance + correctness metrics for multi-modal context). These catch failure cases (irrelevant crops, figure-text mismatch) that text-only metrics miss.

Summary

Text-RAG remains efficient for clean, text-only data. Vision-RAG is the practical default for enterprise documents with layout, tables, charts, stamps, scans, and multilingual typography. Teams that (1) align modalities, (2) deliver selective high-fidelity visual evidence, and (3) evaluate with multimodal benchmarks consistently get higher retrieval precision and better downstream answers—now backed by ColPali (ICLR 2025), VisRAG’s 25–39% E2E lift, and VDocRAG’s unified image-format results.

References:

Michal Sutter is a data science professional with a Master of Science in Data Science from the University of Padova. With a solid foundation in statistical analysis, machine learning, and data engineering, Michal excels at transforming complex datasets into actionable insights.

🔥[Recommended Read] NVIDIA AI Open-Sources ViPE (Video Pose Engine): A Powerful and Versatile 3D Video Annotation Tool for Spatial AI

Share.
Leave A Reply

Exit mobile version