Hacklink

bahiscom

Hacklink

Hacklink

Marsbahis

Marsbahis

BetKare Güncel Giriş

Marsbahis

Marsbahis

Hacklink

casino kurulum

Hacklink

Hacklink

printable calendar

Hacklink

Hacklink

sekabet

Hacklink

Eros Maç Tv

hacklink panel

hacklink

Hacklink

Hacklink

istanbul escort

Hacklink

Hacklink

Hacklink

Marsbahis

Rank Math Pro Nulled

WP Rocket Nulled

Yoast Seo Premium Nulled

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

pusulabet

Hacklink

Marsbahis

Hacklink

Hacklink Panel

Hacklink

Hacklink

Hacklink

Nulled WordPress Plugins and Themes

olaycasino giriş

Hacklink

hacklink

Taksimbet

Marsbahis

Hacklink

Marsbahis

Marsbahis

Hacklink

Hacklink

Bahsine

Tipobet

Hacklink

Betmarlo

Marsbahis

บาคาร่า

Hacklink

Hacklink

Hacklink

Hacklink

duplicator pro nulled

elementor pro nulled

litespeed cache nulled

rank math pro nulled

wp all import pro nulled

wp rocket nulled

wpml multilingual nulled

yoast seo premium nulled

Nulled WordPress Themes Plugins

Buy Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Bahiscasino

Hacklink

Hacklink

Hacklink

Hacklink

หวยออนไลน์

Hacklink

Marsbahis

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink satın al

Hacklink

Hacklink

bahiscom

Hacklink

Hacklink

Marsbahis

Marsbahis

BetKare Güncel Giriş

Marsbahis

Marsbahis

Hacklink

casino kurulum

Hacklink

Hacklink

printable calendar

Hacklink

Hacklink

sekabet

Hacklink

Eros Maç Tv

hacklink panel

hacklink

Hacklink

Hacklink

istanbul escort

Hacklink

Hacklink

Hacklink

Marsbahis

Rank Math Pro Nulled

WP Rocket Nulled

Yoast Seo Premium Nulled

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

pusulabet

Hacklink

Marsbahis

Hacklink

Hacklink Panel

Hacklink

Hacklink

Hacklink

Nulled WordPress Plugins and Themes

olaycasino giriş

Hacklink

hacklink

Taksimbet

Marsbahis

Hacklink

Marsbahis

Marsbahis

Hacklink

Hacklink

Bahsine

Tipobet

Hacklink

Betmarlo

Marsbahis

บาคาร่า

Hacklink

Hacklink

Hacklink

Hacklink

duplicator pro nulled

elementor pro nulled

litespeed cache nulled

rank math pro nulled

wp all import pro nulled

wp rocket nulled

wpml multilingual nulled

yoast seo premium nulled

Nulled WordPress Themes Plugins

Buy Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Bahiscasino

Hacklink

Hacklink

Hacklink

Hacklink

หวยออนไลน์

Hacklink

Marsbahis

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink satın al

Hacklink

bets10

Betpas

meritking güncel giriş

casibom giriş

casibom giriş

casibom

Betorder giriş

VDS Sunucu

Betorder

Betpas giriş

pariteler

betsmove giriş

betsmove giriş

bahiscasino

vaycasino

Betpas

Hacklink

Hacklink

Marsbahis

pusulabet

bahsegel

fixbet

sahabet

matadorbet

onwin

hit botu

kingroyal

jojobet

casibom giriş

onwin

matadorbet

sahabet

meritking

jojobet

betmarino

casinoroyal

kalebet

bahiscasino

matbet

betovis

nitrobahis

casibom giriş

grandpashabet giriş

sekabet

casibom

marsbahis giriş

pusulabet giriş

meritking giriş

holiganbet

holiganbet

sekabet giriş

matbet

matbet

marsbahis

pusulabet

grandpashabet

casibom

meritking

aresbet giriş

Meritking

betebet

lunabet

oslobet


Retrieval augmented generation (RAG) enhances large language models (LLMs) by providing them with relevant external context. For example, when using a RAG system for a question-answer (QA) task, the LLM receives a context that may be a combination of information from multiple sources, such as public webpages, private document corpora, or knowledge graphs. Ideally, the LLM either produces the correct answer or responds with “I don’t know” if certain key information is lacking.

A main challenge with RAG systems is that they may mislead the user with hallucinated (and therefore incorrect) information. Another challenge is that most prior work only considers how relevant the context is to the user query. But we believe that the context’s relevance alone is the wrong thing to measure — we really want to know whether it provides enough information for the LLM to answer the question or not.

In “Sufficient Context: A New Lens on Retrieval Augmented Generation Systems”, which appeared at ICLR 2025, we study the idea of “sufficient context” in RAG systems. We show that it’s possible to know when an LLM has enough information to provide a correct answer to a question. We study the role that context (or lack thereof) plays in factual accuracy, and develop a way to quantify context sufficiency for LLMs. Our approach allows us to investigate the factors that influence the performance of RAG systems and to analyze when and why they succeed or fail.

Moreover, we have used these ideas to launch the LLM Re-Ranker in the Vertex AI RAG Engine. Our feature allows users to re-rank retrieved snippets based on their relevance to the query, leading to better retrieval metrics (e.g., nDCG) and better RAG system accuracy.

Share.
Leave A Reply

Exit mobile version