Marsbahis

Bedava bonus veren siteler

Marsbahis

Hacklink

antalya dedektör

Marsbahis marsbet

Hacklink

Hacklink

Atomic Wallet

Marsbahis

Marsbahis

Marsbahis

Hacklink

casino kurulum

Hacklink

Hacklink

printable calendar

Hacklink

Hacklink

jojobet giriş

Hacklink

Eros Maç Tv

hacklink panel

hacklink

Hacklink

Hacklink

fatih escort

Hacklink

Hacklink

Hacklink

Marsbahis

Rank Math Pro Nulled

WP Rocket Nulled

Yoast Seo Premium Nulled

kiralık hacker

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink Panel

Hacklink

Holiganbet

Marsbahis

Marsbahis

Marsbahis güncel adres

Marsbahis giris

Hacklink

Hacklink

Nulled WordPress Plugins and Themes

holiganbet giriş

olaycasino giriş

Hacklink

hacklink

holiganbet giriş

Taksimbet

Marsbahis

Hacklink

Marsbahis

Marsbahis

Hacklink

Marsbahis

Hacklink

Bahsine

Betokeys

Tipobet

Hacklink

Betmarlo

jojobet giriş

Marsbahis

บาคาร่า

jojobet

Hacklink

Hacklink

Hacklink

Hacklink

duplicator pro nulled

elementor pro nulled

litespeed cache nulled

rank math pro nulled

wp all import pro nulled

wp rocket nulled

wpml multilingual nulled

yoast seo premium nulled

Nulled WordPress Themes Plugins

Marsbahis casino

Buy Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Bahiscasino

Hacklink

Hacklink

Hacklink

Hacklink

หวยออนไลน์

Hacklink

Marsbahis

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink satın al

Hacklink

Marsbahis giriş

Marsbahis

Marsbahis

restbet

restbet

sekabet

savoybetting giriş

savoybetting

Situs Judi Bola

matbet güncel giriş

casibom

meritking


The teacher and the student

Our approach revolves around a concept called knowledge distillation, which uses a “teacher–student” model training method. We start with a “teacher” — a large, powerful, pre-trained generative model that is an expert at creating the desired visual effect but is far too slow for real-time use. The type of teacher model varies depending on the goal. Initially, we used a custom-trained StyleGAN2 model, which was trained on our curated dataset for real-time facial effects. This model could be paired with tools like StyleCLIP, which allowed it to manipulate facial features based on text descriptions. This provided a strong foundation. As our project advanced, we transitioned to more sophisticated generative models like Google DeepMind’s Imagen. This strategic shift significantly enhanced our capabilities, enabling higher-fidelity and more diverse imagery, greater artistic control, and a broader range of styles for our on-device generative AI effects.

The “student” is the model that ultimately runs on the user’s device. It needs to be small, fast, and efficient. We designed a student model with a UNet-based architecture, which is excellent for image-to-image tasks. It uses a MobileNet backbone as its encoder, a design known for its performance on mobile devices, paired with a decoder that utilizes MobileNet blocks.

Share.
Leave A Reply

Exit mobile version