Hacklink

imajbet giriş

Hacklink

Hacklink

Marsbahis

Marsbahis

BetKare Güncel Giriş

Marsbahis

Marsbahis

Hacklink

casino kurulum

Hacklink

Hacklink

printable calendar

Hacklink

Hacklink

sekabet

Hacklink

Eros Maç Tv

hacklink panel

hacklink

Hacklink

Hacklink

ataşehir escort

Hacklink

Hacklink

Hacklink

Marsbahis

Rank Math Pro Nulled

WP Rocket Nulled

Yoast Seo Premium Nulled

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

pusulabet giriş

Hacklink

Marsbahis

Hacklink

Hacklink Panel

Hacklink

Hacklink

Hacklink

Nulled WordPress Plugins and Themes

olaycasino giriş

Hacklink

hacklink

Taksimbet

Marsbahis

Hacklink

Marsbahis

Marsbahis

Hacklink

Hacklink

Bahsine

Tipobet

Hacklink

Betmarlo

Marsbahis

บาคาร่า

Hacklink

Hacklink

Hacklink

Hacklink

duplicator pro nulled

elementor pro nulled

litespeed cache nulled

rank math pro nulled

wp all import pro nulled

wp rocket nulled

wpml multilingual nulled

yoast seo premium nulled

Nulled WordPress Themes Plugins

Buy Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Bahiscasino

Hacklink

Hacklink

Hacklink

Hacklink

หวยออนไลน์

Hacklink

Marsbahis

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink satın al

Hacklink

Hacklink

imajbet giriş

Hacklink

Hacklink

Marsbahis

Marsbahis

BetKare Güncel Giriş

Marsbahis

Marsbahis

Hacklink

casino kurulum

Hacklink

Hacklink

printable calendar

Hacklink

Hacklink

sekabet

Hacklink

Eros Maç Tv

hacklink panel

hacklink

Hacklink

Hacklink

ataşehir escort

Hacklink

Hacklink

Hacklink

Marsbahis

Rank Math Pro Nulled

WP Rocket Nulled

Yoast Seo Premium Nulled

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

pusulabet giriş

Hacklink

Marsbahis

Hacklink

Hacklink Panel

Hacklink

Hacklink

Hacklink

Nulled WordPress Plugins and Themes

olaycasino giriş

Hacklink

hacklink

Taksimbet

Marsbahis

Hacklink

Marsbahis

Marsbahis

Hacklink

Hacklink

Bahsine

Tipobet

Hacklink

Betmarlo

Marsbahis

บาคาร่า

Hacklink

Hacklink

Hacklink

Hacklink

duplicator pro nulled

elementor pro nulled

litespeed cache nulled

rank math pro nulled

wp all import pro nulled

wp rocket nulled

wpml multilingual nulled

yoast seo premium nulled

Nulled WordPress Themes Plugins

Buy Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Hacklink

Marsbahis

Bahiscasino

Hacklink

Hacklink

Hacklink

Hacklink

หวยออนไลน์

Hacklink

Marsbahis

Hacklink

Hacklink

Marsbahis

Hacklink

Hacklink satın al

Hacklink

bets10

Betpas

meritking güncel giriş

casibom giriş

casibom giriş

casibom

Betpas giriş

Kartal Escort

Betpas

Hititbet

pariteler

1xbet giriş

1xbet güncel

maksibet

vaycasino

Betorder

Hacklink

celtabet

Hacklink

Marsbahis

betmarino

jojobet

vaycasino

celtabet

bahiscasino

celtabet

bahiscasino

matbet

grandpashabet

Betpas

meritking

marsbahis

holiganbet

meritking güncel giriş

grandpashabet giriş

sekabet

meritking

onwin

vaycasino

betmarino

marsbahis

onwin

sahabet

matadorbet

meritking

holiganbet

onwin

matadorbet

betvole


Are action-based preferences necessary? One of the key factors of ACT is that the contrastive pairs highlight differences between conversational actions. In “ACT w/ Random Actions”, we additionally examine the importance of action selection by randomly sampling both the winning and losing action when constructing the preference pair, and observe this underperforms normal ACT.

Do we need on-policy sampling? In “ACT w/o on-policy sampling”, we examine the importance of on-policy sampling by evaluating normal off-policy DPO on the dataset as constructed in Phase 1. While we do observe some improvements over SFT (e.g., from 69.0 to 74.8 Macro F1), the overall improvements are much larger when using on-policy sampling as with full ACT. This may be due to the fact that the off-policy negative responses are not guaranteed to lie in the language manifold of the policy model, and distribution shift may be too difficult to overcome with off-policy learning.

Is trajectory simulation necessary? ACT is better-aligned with multi-turn conversations due to its trajectory simulation. Without multi-turn simulation, our approach can be viewed similarly to on-policy DPO variants like IRPO, but with a conversation-specific reward signal which accounts for conversation actions and task heuristics. In “ACT w/ sampling w/o simulation”, we find that this trajectory-level simulation is critical to improving multi-turn performance, especially the policy model’s ability to reason about its own clarification questions.

Is ACT model agnostic? The base model in our main experiments, Zephyr, is obtained by aligning Mistral. In “ACT with unaligned foundation models” we observe a performance gap of 6.5 Action F1 and 4.3 Trajectory F1 after ACT tuning for the two models. However, our results demonstrate ACT can improve performance regardless of pre-existing alignment with human feedback, although it can help as an improved model initialization. Overall, we find that improving base model performance with ACT is model agnostic.

Share.
Leave A Reply

Exit mobile version